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Abstract

The article aims to estimate the coefficient bounds for the second Hankel determinant by using
the class of bi-close-to-convex functions of a complex order in the open unit disk. Making the
direct application of Carathéodory function along with the closely related properties of starlike
functions, we obtain the upper bound for the second Hankel determinant via certain subclass
of bi-close-to-convex functions of complex order. The study discusses the maximization of the
second Hankel determinant in both conventional graph and analytic methods. Moreover, we
explore and modify some results on the study of bi-close-to-convex functions and its second
degree Hankel determinant. At the end of the article, we remark on improvement in the earlier
work of some researchers and discover a better value than the one they obtained.
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1 Introduction

Let the class of analytic functions be denoted by A in the open unit disk such that,
∆ = {|z| < 1 : z ∈ C}. The class of analytic functions is defined by the following mathematical
form:

f(z) = z +

∞∑
n=2

anz
n. (1)

A domain function mapping from a unit disk onto a complex plane is called univalent on a unit
disk if for each z1, z2 ∈ ∆ the function f(z1) ̸= f(z2) whenever z1 ̸= z2. Let T represents the
collection of sub-classes of analytic functions that are made up of functions that yields a unique
value in the unit disk of a radius less than 1. The most pertinent illustration of such a univalent
function is the Köebe’s function, K(z) = z/(1 − z)2. The Köebe’s one-quarter theorem is widely
known for ensuring that the image of a unit disk contains a circle with a radius of 1/4 for any
univalent function f ∈ T . As a result, any univalent function f ∈ A has a corresponding inverse
function, f−1 in a way that f−1(f(z)) = z, (z ∈ ∆) and f(f−1(w)) = w, (|w| < 1/4). The Köebe
one-quarter theorem verifies that the inverse of these functions, f−1(w) = H(w), may be easily
demonstrated by the following equality,

H(w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (2)

The study on the class of close-to-convex functions was initiated by Kaplan[18] which states
that, a function f(z) ∈ A is called close-to-convex function in the unit disk if there exists a star-like
function g, consequently the following condition holds:

Re

{
zf ′(z)

g(z)

}
> 0, (z ∈ ∆). (3)

For the sake of equality equation (3), can be expressed as: zf ′(z) = p(z)g(z), with g(z) given by

g(z) = z +

∞∑
n=2

hnz
n. (4)

Wherefore, a function H(w) ∈ A is called the inverse of close-to-convex (C) functions in the unit
disk assuming there is a function G ∈ S∗ such that g−1(w) = G(w) and f−1(w) = H(w) then the
following inequality holds:

Re

{
wH′(w)

G(w)

}
> 0, (z ∈ ∆), (5)

equivalently (5) yields wH′(w) = q(w)G(w), with G(w) = w +
∑∞

n=2 hnw
n. It is known from

[12, 39], that a function f is known to be close-to-convex with the argument ϕ if a real number
ϕ ∈

(
−π
2
,
π

2

)
operates simultaneouslywith starlike functions g andG respectively in the following

manner,

Re

(
eiϕzf ′(z)

g(z)

)
> 0 and Re

(
eiϕwH′(w)

G(w)

)
> 0, (z ∈ ∆). (6)

Al-Amiri and Thotage [1] introduced the class of close-to-convex functions of the complex or-
der b, where b is a nonzero complex number. A function f with a complex order b ̸= 0 is considered
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to be close-to-convex function , if the following inequality holds:

Re

[
1 +

1

b

{(
zf ′(z)

g(z)

)
− 1

}]
> 0, (z ∈ ∆), (7)

for g ∈ S∗ (the starlike function).

A function f is known to be bi-univalent if the analytic function and its inverse are both univa-
lent in the unit disc. For example f(z) = −log(1− z) and f(z) = z/1− z. Analytically a function
f belongs to the class of bi-close-to-convex function if the expression (3) and (5) hold simultane-
ously. The class of bi-close-to-convex function (CΣ) of order α (0 ≤ α < 1) was studied by [15].
The class of bi-close-to-convex function fulfills the following conditions:

Re

(
zf ′(z)

g(z)

)
> α, and Re

(
wH′(w)

G(w)

)
> α,

(
z ∈ ∆,H = f−1(z)

)
. (8)

The class Σ of bi-univalent functions was studied by Lewin in 1967 (see [21]). In this study he
estimated the second coefficient bound (|a2|) to be less than 1.51. Consequently other researchers

such as [5] published that |a2| ≤
√
2 and some proved that the maximum value of |a2| =

4

3
, (see

[24]). Further, Tan [38] showed that |a2| < 1.485, which is regarded as the most accurate estimate
available for bi-univalent functions. In a progression in the study of bi-univalent function Srivas-
tava et al. [35] have introduced two subclasses whose inverse has one-one analytic continuation
towards the open unit disc. In 2017, Sakar and Güney [32] investigated the m-fold symmetric an-
alytic functions and found coefficients for analytic bi-univalent functions defined by fractional cal-
culus through the application of Faber polynomial expansion. The study on bi-univalent functions
has been a hot topic for the past several years see for example [22, 37]. The coefficient problems
of the form {|an| : n ≥ 2} for the functions f ∈ Σ defined by (1) is apparently open problems
and under research for sharp bounds. In recent study of bi-univalent functions, Rehman et al.
[31] have made an attempt to solve the n−th coefficient bound for a specific class of bi-univalent
functions. Srivastava et al. [34] applied the Faber polynomial expansion method to estimate the
coefficient of general Taylor-Maclaurin series and the Fekete-Szegö type inequalities for the class
of bi-close-to-convex function. A new subclass of bi-close-to-convex functions associated with the
generalized hypergeometric functions, q-fractional derivative operator and with bounded bound-
ary rotation is recently studied by [6, 36] and coefficient estimates of bi-close-to-convex functions
associated with generalized hypergeometric functions for Faber polynomial were studied by Jie et
al. [41].

The Hankel determinant works as a tool in the study of univalent functions, for instance in
demonstrating how a function of bounded properties behaves in a unit disc ∆. This means that
the function with Laurent series in the vicinity of the origin with an integral coefficient is rational
by having a reasonable ratio between two bounded analytic functions. The qth Hankel determinant
for q ≥ 1 and n ≥ 0 was developed by Noonan and Thomas [25], and it states

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

. . . .

. . . .

. . . .
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
. (9)

The Hankel determinant plays a vital role in the study of singularity see for example Danies [8]
and Edrei [10]. Other researchers who also considered this determinant for their studies such as
Noor [27] calculated the increasing rate of Hq(n) for the functions f specified by (1) whenever
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n approaches the infinity with a constrained boundary rotation. Pommerenke [29] investigated
the Hankel determinants for starlike functions, univalent functions, and areally mean p-valent
functions. In another piece of research Pommerenke [30] shown that the Hankel determinants of
univalent functions meet the following inequality,

Hq(n) < Kn−(λ+ 1
2 )q+

3
2 , (n = 1, 2, · · · ; q = 2, 3, · · · ; λ > 1/4000),

whereK relies on q.

Moreover, [16] proved that for the areallymeanunivalent functionsH2(n) < An
1
2 (n = 1, 2, · · · )

and A is an absolute constant. There are researchers who further studied the Hankel determinant
of univalent functions and, Coefficient differences and Hankel determinants of areally mean p-
valent functions see [11, 26]. Note that for q = 2 and n = 1, the above Hankel determinant
interacts with the well-known result of Fekete-Szegö functional |a3 − a22| = H2(1). This function
was extended by introducing µ as real and complex both. The sharp estimates for µ real were
estimated by Fekete-Szegö,

∣∣a3 − µa22
∣∣ ≤


4µ− 3, µ ≤ 1,

1 + 2exp

(
−2

1− µ

)
, 0 ≤ µ ≤ 1,

3− 4µ, µ ≥ 0.

(10)

The analogues investigation of (10), studied by Keogh and Merkes [19], states that for ϕ and λ be
real numbers, where |ϕ| < π

2
, λ ∈ [0, 1) and let S∗(ϕ, λ) is the set of analytic functions in the open

unit disk such that f(0) = 0 and f ′(0) = 1 then f ∈ S∗(ϕ, λ) if the following condition holds:

Re

(
eiϕ

zf ′(z)

f(z)

)
> λ cosϕ, (z ∈ ∆). (11)

In addition, Zaprawa [40] investigated some more classes of bi-univalent functions related to
Fekete-Szegö problem. Considering the inverse function, (f−1(w) = w +

∑∞
k=2 γkw

k) to the
strongly starlike functions of order α(α ∈ (0, 1]), Ali [2] estimated the first four sharp coefficients
bounds for the Fekete-Szegö functional (|γ3 − tγ22 |) where t is a real number. In the recent studies
regarding the second degree Hankel determinant (|a2a4 − a23|), Lee et al.[20] obtained the func-
tions associated to subclasses of Ma-Minda convex and starlike functions. Further Janteng [17]
was able to calculate the sharp estimates for the second-degree Hankel determinant by adopting
the function whose derivative contains a positive real part.

2 Preliminary Results and Discussion

In this sectionwe include the definitions and lemmaswhich are necessary to establish ourmain
results. The portion includes the construction of a new sub-class of bi-close-to-convex functions
and its relation to other classes studied by other researchers.

Definition 2.1. The class of Carathéodory functions P , is the class of functions p ∈ A of the form,

p(z) = 1 +

∞∑
n=1

bnz
n, (z ∈ ∆).

In view of Carathéodory functions P , the conducive results for the functions of the class P are:

94



H. U. Rehman et al. Malaysian J. Math. Sci. 18(1): 91–105(2024) 91 - 105

Lemma 2.1. [28] If the function p ∈ P is given in the form (1), then the sharp estimates |bn| ≤ 2,
(n = 1, 2, · · · ) holds.

Lemma 2.2. [13] If the function p ∈ P is given in the form (1), then

2b2 = b21 + (4− b21)x, (12)

and

4b3 = b31 + 2(4− b21)b1x− b1(4− b21)x
2 + 2(4− b21)

(
1− |x|2

)
t, (13)

for some x, t with (|x|, |t| ≤ 1).

Lemma 2.3. [19] Let the function f ∈ S∗ be defined by (4). Then for any real number µ,

|a3 − µa22| ≤


3− 4µ, if µ ≤ 1

2
,

1, if 1

2
≤ µ ≤ 1,

4µ− 3, if µ ≥ 1.

Lemma 2.4. [17] Let the function f ∈ S∗ be defined by (4). Then |a2a4 − a23| ≤ 1.

Lemma 2.5. [4] Let the function f ∈ S∗ be defined by (4). Then |a2a3 − a4| ≤ 2.

Remark 2.1. Note that equality in Lemma 2.4 and Lemma 2.5, is obtained for the Köebe function,
K(z) = z/(1− z)2.

Lemma 2.6. [9] Let the function f ∈ S∗ be defined by (3), then |an| ≤ n (n = 2, 3, · · · ). The inequality
is strictly true for all n, unless f is the rotation of Köebe function,K(z) = z/(1− z)2.

We now introduce the sub-class of bi-close-to-convex function of a complex orderm, for which
we seek the upper bound for the second order Hankel determinant for functions belonging to the
class CΣ(m,ϕ, λ). The functional for the second order Hankel determinant is given by:

|a2a4 − a23| = H2(2).

Hence, in view of (3), (5)–(7) and (11), we construct a subclass CΣ(m,ϕ, λ), that is defined in the
following manner.

Definition 2.2. A function f ∈ A is said to be in the class CΣ(m,ϕ, λ) if it satisfies the following condi-
tions:

Re

[
1 +

1

m

{
eiϕzf ′(z)

g(z)
− 1

}]
> λcosϕ, (z ∈ ∆), (14)

and

Re

[
1 +

1

m

{
eiϕwH′(w)

G(w)
− 1

}]
> λcosϕ, (w ∈ ∆), (15)

where H(w) = f−1(w) and G(w) = g−1(w) defined by (2), g(z) = z +
∑∞

n=2 hnz
n ∈ S∗ and

G(w) = w +
∑∞

n=2 hnw
n ∈ S∗ with (m ∈ C,m ̸= 0), ϕ ∈ (−π/2, π/2) and (0 ≤ λ < 1).

It is easy to see that by specifying values tom,ϕ and λ, this subclass CΣ(m,ϕ, λ), interacts with
some substantial subclasses that have been studied by numerous authors in their earlier works,
for instance we enlist the following relations;
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(i) C(m, 0, 0) ≡ K(b) (Al-Amiri and Thotage [1]).

(ii) C(1, 0, λ) ≡ S(α) (Hamidi and Jahangiri [15]).

(iii) C(1, 0, 0) ≡ C (Kaplan et al. [18]).

(iv) CΣ(1, 0, 0) ≡ CΣ (Güney et al. [14]).

(v) C(m, 0, λ) ≡ S∗(γ, β) (Altıntaş et al. [3]).

(vi) C(m, 0, 0) ≡ S∗(b) (Nasr and Aouf [23]).

(vii) C(1, γ, 0) ≡ Cβ(g) (Wieclaw and Zaprawa [39]).

(viii) C(1, γ, λ) ≡ S(γ, λ) (Keogh and Merkes [19]).

Recently, Cho et al. [7] and Güney et al. [14], investigated the class of bi-close-to-convex

function and respectively obtained the maximum bounds 227

36
and 353

36
, for the second Hankel de-

terminantH2(2). In a recent studies [33] has considered a subclass of bi-close-to-convex functions
to obtain the initial estimates for the functions in these subclasses.

The main goal of this investigation is to obtain a smaller upper bound for the second Hankel
determinant via our newly defined subclass of bi-close-to-convex function of a complex order.

3 Main Results

Theorem 3.1. Let the function f(z) given by (1) be in the class CΣ(m,ϕ, λ) andG(w) = g−1(w). Then,

|H2(2)| = |a2a4 − a23| ≤
145

18
.

Proof. Let f ∈ CΣ(m,ϕ, λ) and H(w) = f−1(w). Then by using (14) and (15), we receive

eiϕ
(
zf ′(z)

g(z)

)
= {1 +m(1− λ cosϕ)(p(z)− 1)}, (∀ z ∈ ∆), (16)

and

eiϕ
(
wH′(w)

G(w)

)
= {1 +m(1− λ cosϕ)(q(w)− 1)}, (∀w ∈ ∆), (17)

where p(z) = 1 +
∑∞

n=1 bnz
n ∈ P, (z ∈ ∆) and q(w) = 1 +

∑∞
n=1 cnw

n ∈ P, (w ∈ ∆).

Then, upon comparing the coefficients of (16) and (17) we have,

2a2 − h2 = ψb1, (18)
3a3 − 2a2h2 + h22 − h3 = ψb2, (19)

4a4 − 3a3h2 − 2a2h3 + 2a2h
2
2 + 2h2h3 − h32 − h4 = ψb3, (20)
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and

−2a2 + h2 = ψc1, (21)
6a22 − 3a3 + h3 − 2a2h2 − h22 = ψc2, (22)

−4a4 − 3a3h2 − 2a2h3 + 2a2h
2
2 − 3h2h3 + 2h32 + h4 + 20a2a3 + 6a22h2 − 20a32 = ψc3, (23)

where ψ = e−iϕm(1−λ cosϕ), is used to shorten the lengthy expressions. Note that by simplifying
the equations (18) and (21) we obtain b1 = −c1. Thus making the use of equation (18) or (21),
we get

a2 =
h2 + b1ψ

2
. (24)

Next on subtracting (22) from ((19) with the use of (24), we receive a3;

a3 =
h3
3

− h22
12

+
h2b1ψ

2
+
b21ψ

2

4
+

(b2 − c2)ψ

6
. (25)

Further upon subtracting (23) from (20), and then utilizing the equations (24) and (25), we get
a4

a4 =
h4
4

+
7h32
48

− 5h2h3
24

− h22b1ψ

24
+

3h2b
2
1ψ

2

16
+

5b3b1ψ

12
+

5h2(b2 − c2)ψ

24

+
5b1(b2 − c2)ψ

2

24
+

(b3 − c3)ψ

8
.

(26)

At this stage, we can proceed to compute the second Hankel determinant H2(2), just by making
some necessary simplification and setting terms in a way so that Lemmas (2.1 and 2.2) are func-
tional to them. Then by applying the modulus function we obtain

|a2a4 − a23| =

∣∣∣∣∣ 19144
h22(b2 − c2)ψ − 1

9
h3(b2 − c2)ψ − 1

36
(b2 − c2)

2ψ2 +
1

16
h2(b3 − c3)ψ

+

(
1

8
h2h4 −

1

9
h23

)
+

(
1

8
h4 −

11

48
h2h3

)
b1ψ +

(
1

24
h3 −

13

96
h22

)
b21ψ

2

+

(
19

288
h42 −

7

144
h22h3

)
+

(
13

96
h32b1ψ +

1

24
h2b1(b2 − c2)ψ

2 − 5

32
h2b

3
1ψ

3

)
+

(
1

16
b1(b3 − c3)ψ

2 +
1

48
b21(b2 − c2)ψ

3 − 1

16
b41ψ

4

) ∣∣∣∣∣.
(27)

Setting equation (27) for the inequality properties defined by Lemmas 2.3 – 2.6, we have

|a2a4 − a23| =

∣∣∣∣∣18 (
h2h4 − h23

)
+

1

72
h23 −

1

9

(
h3 −

19

16
h22

)
(b2 − c2)ψ − 1

36
(b2 − c2)

2ψ2

+
1

16
h2(b3 − c3)ψ +

1

8
(h4 − h2h3)b1ψ − 5

48
h2h3b1ψ

+
1

24

(
h3 −

13

4
h22

)
b21ψ

2 − 7

144

(
h3 −

19

14
h22

)
h22

− 5

32
h2b1ψ

{
b21ψ

2 − 4

15
(b2 − c2)ψ − 13

15
h22

}
− 1

16
b1ψ

2

{
b31ψ

2 − 1

3
b1(b2 − c2)ψ − (b3 − c3)

} ∣∣∣∣∣.

(28)
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Remark 3.1. For ψ = 1, equation (28) matches with equation (2.20) obtained by Güney et al. [14, page
8] and for ψ = 2, coincides with equation (15) of Cho et al. [7, page 5].

In order to determine the values of (b2 − c2) and (b3 − c3), especially when the function is
defined by starlike function, then by virtue of Lemma 2.2 with b1 = −c1 we get,

2b2 = b21 + (4− b21)x

2c2 = c21 + (4− c21)y

}
=⇒ b2 − c2 =

(
4− b21

2

)
(x− y), (29)

and for some minimum values of {|t|, |v|, |x|, |y|} ≤ 1, we can consider

4b3 = b31 + 2(4− b21)b1x− b1(4− b21)x
2 + 2(4− b21)

(
1− |x|2

)
t

4c3 = c31 + 2(4− c21)c1y − c1(4− c21)y
2 + 2(4− c21)

(
1− |y|2

)
v

}
. (30)

Then subtracting the above pair of equations we receive (b3 − c3),

b3 − c3 =
b31
2

+
b1(4− b21)

2
(x+ y)− b1(4− b21)

4
(x2 + y2)

+
(4− b21)

2

{
(1− |x|2)t− (1− |y|2)v

}
.

(31)

In view of equations from (29)-(31), the equation (28) becomes

|a2a4 − a23| =

∣∣∣∣∣18 (
h2h4 − h23

)
+

1

72
h23 +

1

8
ψb1 (h4 − h2h3)−

5

48
h2

(
h3 −

13

10
h22

)
ψb1

+
1

24

(
h3 −

13

4
h22

)
ψ2b21 −

7

144
h22

(
h3 −

19

14
h22

)
− 5

32
h2ψ

3b31

+
1

32
ψ2b41 +

1

32
h2ψb

3
1 −

1

16
ψ4b41 + (x+ y)

{
1

32
ψ2b21(4− b21) +

1

32
h2ψb1(4− b21)

}
+ (x− y)

{
1

96
ψ3b21(4− b21) +

1

48
h2ψ

2b1(4− b21)−
1

18
ψ(4− b21)

(
h3 −

19

16
h22

)}
− 1

144
ψ2(4− b21)

2(x− y)2 + (x2 + y2)

{
− 1

64
ψ2b1(4− b21)−

1

64
h2ψb1(4− b21)

}
+ (1− |x|2)t

{
1

32
ψ2b1(4− b21) +

1

32
h2ψ(4− b21)

}
+ (1− |y|2)v

{
− 1

32
ψ2b1(4− b21)−

1

32
h2ψ(4− b21)

}∣∣∣∣∣.
(32)

Once again quoting the Lemma 2.1, that |b1| ≤ 2 so, b1 can be replaced by b, while assuming that
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b ∈ [0, 2], then by triangle inequality the right hand side of equation (32) becomes,

|a2a4 − a23| ≤
1

8
|h2h4 − h23|+

1

72
|h3|2 +

1

8
|ψ||h4 − h2h3|b+

5

48
|h2||h3 −

13

10
h22||ψ|b

+
1

24
|h3 −

13

4
h22||ψ|2b2 +

7

144
|h2|2|h3 −

19

14
h22|+

5

32
|h2||ψ|3b3 +

1

32
|ψ|2b4

+
1

32
|h2||ψ|b3 +

1

16
|ψ|4b4 + 1

144
|ψ|2(4− b2)2(|x|+ |y|)2

+ (|x|+ |y|)
{

1

32
|ψ|2b2(4− b2) +

1

32
|h2||ψ|b(4− b2) +

1

96
|ψ|3b2(4− b2)

+
1

48
|h2||ψ|2b(4− b2) +

1

18
|ψ|(4− b2)|h3 −

19

16
h22|

}
+ (|x|2 + |y|2)

{
1

64
|ψ|2b(4− b2) +

1

64
|h2||ψ|b(4− b2)

}
+ (1− |x|2)t

{
1

32
|ψ|2b(4− b2) +

1

32
|h2||ψ|(4− b2)

}
+ (1− |y|2)v

{
1

32
|ψ|2b(4− b2) +

1

32
|h2||ψ|(4− b2)

}
.

(33)

Now manipulating the Lemmas from 2.3-2.6, so that we can obtain

|a2a4 − a23| ≤
13

18
+

7

12
|ψ|b+ 5

12
|ψ|2b2 + 5

16
|ψ|3b3 + 1

16
|ψ|4b4 + 1

32
|ψ|(2 + |ψ|b)(b3 − 2b2 + 8)

+ (|x|+ |y|)
{

1

96
|ψ|2(3 + |ψ|)b2(4− b2) +

1

48
|ψ|(3 + 2|ψ|)b(4− b2) +

7

72
|ψ|(4− b2)

}
+ (|x|2 + |y|2)

{
1

64
|ψ|{4− (2− |ψ|)b}(b2 − 4)

}
+

1

144
|ψ|2(4− b2)2(|x|+ |y|)2.

(34)

Thus setting α = |x| ≤ 1, γ = |y| ≤ 1 and |a2a4 − a23| = H2(2), we get

H2(2) ≤ Q1 + (α+ γ)Q2 + (α2 + γ2)Q3 + (α+ γ)2Q4 = F (α, γ) (35)

where, {Q1, Q2, Q3, Q4} respectively represents;

Q1(b, ψ) =

[
13

18
+

7

12
|ψ|b+ 5

12
|ψ|2b2 + 5

16
|ψ|3b3 + 1

16
|ψ|4b4 + 1

32
|ψ|(2 + b|ψ|)(b3 − 2b2 + 8)

]
≥ 0,

Q2(b, ψ) =

[
1

96
|ψ|2(3 + |ψ|)b2(4− b2) +

1

48
|ψ|(3 + 2|ψ|)b(4− b2) +

7

72
|ψ|(4− b2)

]
≥ 0,

Q3(b, ψ) =

[
− 1

64
|ψ|{4− (2− |ψ|)b}(4− b2)

]
≤ 0,

Q4(b, ψ) =

[
1

144
|ψ|2(4− b2)2

]
≥ 0.

(36)

We now investigate the maximization of the function F (α, γ) over the closed square region of the
B = {(α, γ) : 0 ≤ (α, γ) ≤ 1} for b ∈ [0, 2] and |ϕ| < π/2. For this reason we have to discuss the
maximization of F (α, γ) for several cases in focus when b = 0, b = 2, b ∈ (0, 2) and ϕ = 0, ϕ = π/2
and ϕ ∈ (−π/2, π/2). It is evident in Figure 1 that for b = 2 and ϕ = 0, the maximum value is just
ahead of 8.
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Figure 1: Maximization of F (α, γ) = Ωmax.

Analytically by looking at the expressions in (36), we see that Q3 < 0 and Q3 + 2Q4 > 0 for
b ∈ (0, 2), consequently we get

F (α, γ) = Fαα.Fγγ − (Fαγ)
2 < 0.

Thereupon, the local maximum of F (α, γ) cannot occur inside the square region B. In order to
examine the upper bound of the function F (α, γ) on the edge of square B, we assume α = 0 and
0 ≤ γ ≤ 1 (or γ = 0 and 0 ≤ α ≤ 1). Thus with regards to F (α, γ) = F (γ, α), it is fair enough to
verify that there exists a maximum of

F (α, γ) = F (α, α) = Q1 + 2αQ2 + 2α2(Q3 + 2Q4), (37)

on α ∈ [0, 1], according to b ∈ [0, 2]. Then on differentiating F (α), we get

F ′(α) = 2Q2 + 4α(Q3 + 2Q4). (38)

Here we need to show that F (α) is an increasing function. It is easy to see that if Q3 + 2Q4 ≥ 0,
then F ′(α) > 0 for α > 0, consequently F (α) is an increasing function and an increasing function
cannot have a local maxima in the interior of a closed region of B. For α ∈ (0, 1) and for any fixed
b, such that b ∈ [0, 2] the maximum value of the function F (α) appears at F (1),

max{F (α)} = F (1) = Q1 + 2Q2 + 2Q3 + 4Q4. (39)

Secondly for the case if Q3 + 2Q4 < 0, we follow the work of [7] and accordingly consider the
equation (37) for 0 < α < 1 with b ∈ [0, 2], we consider for a critical point by setting F ′(α) = 0 in
(38),

α◦ =
−Q2

2(Q3 + 2Q4)
=
Q2

2k

=
2
(
3b2|ψ|2 + 3b(3b+ 4)|ψ|+ 18b+ 28

)
(8b2 − 9b− 32)|ψ|+ 36

> 1,

(40)
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for any fixed b ∈ [0, 2], where k = −(Q3 + 2Q4) > 0. This means for α◦ =
Q2

2k
> 1, It follows that

k <
Q2

2
≤ Q2, and finally we can state that Q2 + Q3 + 2Q4 ≥ 0, and hence proved an increasing

function. Therefore, we can write

F (0) = Q1 ≤ Q1 + 2(Q2 +Q3 + 2Q4) = F (1).

Since, Fmax(α) = F (1), coincides with (39), this implies Fmax(α, γ) = F (1, 1) lies on the boundary
of the square. Let Ω : (0, 2) −→ R be defined by,

Ω(b) = F (1, 1) = Q1 + 2Q2 + 2Q3 + 4Q4.

Thus, using the values of {Q1, Q2, Q3, Q4} defined by (36), we receive

Ω(ψ, b) =
1

288
|ψ|

(
18|ψ|3 − 6|ψ|2 − 25|ψ| − 36

)
b4 +

1

32
|ψ|2 (10|ψ| − 1|) b3

+
1

36
|ψ|

(
3|ψ|2 + 28|ψ|+ 11

)
b2 +

1

24
|ψ| (3|ψ|+ 20) b+

1

18

(
8|ψ|2 + 14|ψ|+ 13

)
.

(41)

By reverting ψ = e−iϕm(1− λ cosϕ) in (41) the function Ω(ψ, b) becomes,

Ω(m,ϕ, λ)(b) =
e4im(ϕ)|m(1− λcosϕ)|4

16
b4 − e3im(ϕ)|m(1− λcosϕ)|3

48
b2(b2 − 15b− 4)

− e2im(ϕ)|m(1− λcosϕ)|2

288
(25b4 + 9b3 − 224b2 − 36b− 128)

− eim(ϕ)|m(1− λcosϕ)|
72

(9b4 − 22b2 − 60b− 56) +
13

18
,

(42)

where m is a non-zero complex number and im(z) is the iota of a complex number and |z| is the
modulus function. For instance, let us consider the bounded value of m, in the open unit disk
m = 1 − λ, λ = 0 and ϕ = 0 in (42), we obtain an expression that yields algebraically and
graphically same value (see Figure 1).

Ωmax(b) =
35

18
+

23

24
b+

7

6
b2 +

9

32
b3 − 49

288
b4. (43)

It is worth mentioning to see that Ω′(b) > 0, with respect to b showing that Ω(b) is an increasing
function of b. Therefore Ω(b) will attain the maximum value whenever b = 2. Thus the smallest
maximum bound for the function defined by (43) is 145

18
≈ 8.05̄. This completes the asserted

proof.

Remark 3.2. During the literature review of bi-close-to-convex functions, it was noted in the paper of
Güney et al. [14, page 8] that the equality after the equation (2.20) in their work is further rectifiable. The
original text in their work is given by:

|a2a4 − a23| =
∣∣∣∣· · ·+ 1

8
(b4 − b2b3) c1 −

5

48
b2b3c1 + · · ·+ 13

96
b32c1 − · · ·

∣∣∣∣ .
The resultant of above three coefficients of c1 in [14, page 9] produces 47

24
c. Their result can be improved if

these terms are combined for the applicability of Lemma 2.3. So, after combining the above like terms and
then factor the common out from last two terms mentioned above, we receive

|a2a4 − a23| =
∣∣∣∣· · ·+ 1

8
(b4 − b2b3) c1 −

5

48
b2

(
b3 −

13

10
b22

)
c1 + · · ·

∣∣∣∣ .
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In view of Lemma 2.3, the new result obtained from the above expression is 17
24
c. Following the replacement

in their work till equation (2.22) the term becomes 43

24
c, the final estimation is 223

36
. Their result is 353

36
.

The new estimation is far smaller than their work in [14] and the one determined by [7].

4 Conclusion

In this article, we introduced a sub-class of bi-close-to-convex functions of a complex order. We
determined the upper bound for the second Hankel determinant by considering the subclass of
bi-close-to-convex function of a complex order. We enhanced the estimation of a maximum upper

bound studied by [14]which is 353
36

but after themodification the new upper bound for their work

is 223

36
, which is more accurate then the value obtained in [14] and [7] which is 227

36
.
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